Congrats to Magda Bonarowska on publishing the following work in the ECS Journal of Solid State Science and Technology:
Capacitance Properties of Chemically Prepared Carbon Nanostructure/Polyazulene Composites
Emilia Grądzka, Gian Andrea Rizzi, Magdalena Bonarowska and Piotr Dłużewski
Abstract
This work describes the chemical formation of composites based on different carbon nanostructures, such as single-walled carbon nanotubes, multi-walled carbon nanotubes, single-layer graphene oxide and p-type conducting polyazulene. The composite materials were synthesized in ethanol solution containing an appropriate amount of carbon nanostructures, azulene and ferric chloride as an oxidizing agent. The main attention was given to the electrochemical properties of these materials and their capacitance performance. The type of nanostructures influenced the morphology of the synthesized polyazulene. Thus, the relationship between the type of nanostructures present in the composite and its morphology and the electrochemical and stability properties were studied. The highest specific capacitance of 649 F g-1 was obtained for the SWCNT/PAZ composite. This value is nine times higher than the specific capacitance of pristine polyazulene synthesized under the same conditions. The SLGO/PAZ composite exhibited the lowest specific capacitance of 53 F g-1. However, this value was improved by approximately 77% by thermal treatment of the composite material at high temperature, resulting in an increase in the BET surface area as well as an increase in conductivity after heat treatment.