New paper is out!

Tuning Nano‐Nickel Catalyst Hydrogenation Aptitude by On‐the‐Fly Zirconium Doping
https://doi.org/10.1002/cctc.202000235

The effect of nano‐Ni catalyst post‐synthetic Zr‐modification on hydrogenation reaction of 6‐methyl‐5‐hepten‐2‐one was investigated in a fixed bed continuous‐flow micro‐reactor to produce fine chemicals. The catalytic performance revealed that Zr‐doping achieved by surface organometallic chemistry approach modifies the natural aptitude of nickel to hydrogenate C=C bond, since the addition of small quantities of zirconium significantly increased the amount of unsaturated and saturated alcohols formed in 6‐methyl‐5‐hepten‐2‐one hydrogenation. Quantum chemical calculations revealed a stronger interaction between Zr←O=C that promotes the formation of C=C semihydrogenation product and enhances the probability of complete hydrogenation. The on‐the‐fly strategy presented herein enables for rapid optimization and understanding of catalytic processes.

Further on retinoids isomerization: this time light!

Happy to announce new paper from our group:

Z-isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis

Catalytic Z-isomerization of retinoids to their thermodynamically less stable Z-isomer remains a challenge. In this report, we present a photochemical approach for the catalytic Z-isomerization of retinoids using monochromatic wavelength UV irradiation treatment. We have developed a straightforward approach for the synthesis of Z-retinoids in high yield, overcoming common obstacles normally associated with their synthesis. Calculations based on density functional theory (DFT) have allowed us to correlate the experimentally observed Z-isomer distribution of retinoids with the energies of chemically important intermediates, which include ground- and excited-state potential energy surfaces. We also demonstrate the application of the current method by synthesizing gram-scale quantities of 9-cis-retinyl acetate 9Z-a. Operational simplicity and gram-scale ability make this chemistry a very practical solution to the problem of Z-isomer retinoid synthesis.

Graphical abstract: Z-isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis

Read more: https://pubs.rsc.org/en/content/articlelanding/2019/ob/c9ob01645g

Openings in CoopCat project!

We are hiring! We look for a skilled PhD student and post-doctoral researcher to join CoopCat team. Student positions are available as well. See details in Jobs section!